
A Parallel Symmetric Successive Overrelaxation Method for
OVERFLOW

Joseph M. Derlaga,∗ Charles W. Jackson,† Pieter G. Buning,‡
NASA Langley Research Center, Hampton, Virginia, 23681

The block Jacobi symmetric successive overrelaxation (SSOR) algorithm has been reformu-
lated as a parallelized algorithm for the OVERFLOW structured, overset grid, computational
fluid dynamics flow solver. Simple changes to the flow solver required to implement the algo-
rithm are discussed. A series of test cases are presented that demonstrate how the addition of
implicit overset boundaries has improved the robustness and nonlinear convergence character-
istics of the flow solver.

I. Introduction
Parallelization of a linear solver can be a difficult task. Typical stationary iterative solvers, beyond point Jacobi, are

not well suited to a direct parallel extension due to the need to carefully orchestrate the parallel communication and
iterative behavior between multiple subdomains. Nonstationary methods, such as Krylov subspace methods, are an
attractive alternative as they typically only require a parallel matrix-vector product. Preconditioning for Krylov methods
is typically accomplished through a modification (or simplified variant) of a stationary linear solver, and may still be
treated in a block Jacobi manner, bypassing parallel communication during the preconditioning operation. In either case,
the introduction of a block Jacobi phase to a stationary or nonstationary linear solver can be detrimental to convergence.

Due to the flexibility of overset grids and the use of approximate factorization techniques, OVERFLOW has used a
divide-and-conquer solver paradigm since its inception; i.e., the linear system is solved in a block Jacobi manner. Due
in part to this design, OVERFLOW has maintained a small memory footprint and high computational efficiency on
a per iteration basis. However, the approximate factorization techniques suffer from factorization error and difficult
to implement implicit boundary conditions. To address factorization errors and improve robustness, a symmetric
successive overrelaxation (SSOR) scheme was introduced in Nichols et al. [1]. Recent work by Derlaga et al. [2]
has focused on adding implicit boundary conditions and better numerical approximations to improve time to solution.
However, all of the linear solvers have remained in a block Jacobi paradigm that results in artificial explicit boundary
conditions between overset subdomains that are only updated at the nonlinear residual level.

To address the issue of explicit boundary condtions between subdomains, OVERFLOW has been modified to allow
for a parallel linear solve. This has been done in the context of the SSOR solver to build on the previous convergence
improvements. The focus of this work is not on creating a parallel algorithm that matches the behavior of the serial
SSOR scheme; there is simply too much flexibility in the overset gridding process to make the orchestration of that
process practical. Instead, the goal of this work is to implement a form of the data parallel algorithms proposed in
Wissink et al. [3] or Lee and Lee [4] that will work well with OVERFLOW’s overset grid paradigm and alleviates some
of the problems inherent to explicit overset grid boundaries.

The remainder of this paper will describe the basic SSOR solver scheme, introduce the parallel SSOR solver, and
compare the proposed algorithm with other versions of the SSOR scheme available in OVERFLOW in a similar vein to
the work of Derlaga et al. [2].

II. Background and Motivation
The SSOR scheme is an iterative matrix inversion process that was introduced to OVERFLOW as a more stable linear

solver for the upwind flux discretizations, as compared to the approximate factorization schemes, which were primarily
focused on the central-flux finite-difference algorithm. More recent work has focused on increasing the convergence
rate of the nonlinear solver by adding implicit physical boundary conditions and improved flux linearizations [2] to an
‘improved’ SSOR (ISSOR) scheme. While that work greatly improved the convergence characteristics of OVERFLOW

∗Research Scientist, Computational AeroSciences Branch, 15 Langley Blvd. MS 128, AIAA Member
†Research Scientist, Computational AeroSciences Branch, 15 Langley Blvd. MS 128, AIAA Member
‡Senior Research Scientist, Computational AeroSciences Branch, 15 Langley Blvd. MS 128, AIAA Associate Fellow

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

 AIAA AVIATION 2021 FORUM

 August 2-6, 2021, VIRTUAL EVENT

 10.2514/6.2021-2747

 This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

 AIAA AVIATION Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2021-2747&domain=pdf&date_stamp=2021-07-28

2.3, it did nothing to fix issues related to the explicit boundary conditions at overset regions or the artificial explicit
boundaries created by block splitting. In the authors’ experiences, OVERFLOW can be sensitive to block splitting, often
experiencing degraded convergence due to ‘bad’ or ‘unfortunate’ grid splitting as grids are automatically decomposed
for MPI load balancing. The same modifications to the SSOR scheme detailed in Ref. [2] that have improved nonlinear
convergence have also exacerbated problems caused by grid splitting. Faster convergence of the block Jacobi algorithm
results in discontinuities between grid blocks due to the lack of communication during the linear solve. These artificial
jumps can then destabilize both the linear and nonlinear solvers resulting in divergence. To address these issues, a
parallel SSOR (PSSOR) algorithm is proposed that builds on the developments of the ISSOR scheme. The following
sections continue with a primer on basic terminology, and the SSOR schemes, and then continue with a discussion of
two forms of a parallel SSOR scheme.

III. The SSOR Algorithm
The concern of a linear solver is the solution of an equation of the form �G = 1, where � is some matrix, 1 is a

forcing function in the form of a vector, and G is the solution vector. For OVERFLOW, the matrix � is the left-hand
side (LHS) Jacobian matrix formed by a nearest neighbor approximation of the nonlinear residual, while the vector 1
(RHS) contains the full nonlinear residual. The solution, G, is a vector of solution updates in the form of Δ&/�, where
& represents the conserved variables and � is the determinant of the metric transformation matrix (and the inverse of the
cell volume). For convenience, we will only refer to Δ&/� as Δ& from this point. For reference, the nonlinear solution
proceeds from an initial guess for the solution &, through the formation of the nonlinear residual and solution of the
linear problem, and then the application of the solution update to the estimated solution and this process is continued
until the residual norm has been sufficiently converged.

As discussed in Ref. [1] the SSOR solvers decompose the LHS matrix into a banded diagonal structure based on the
three grid directions and premultiply the LHS and RHS by the inverse of the main diagonal. This results in a vector, ',
for the RHS and a set of six scaled block diagonals � 9/:/; and � 9/:/; for the sub- and superdiagonal portions of the
LHS, one each for the J, K, and L grid directions. Note that the main block diagonal is assumed to be inverted and
applied properly. For a loop over the L, K, and J directions, where J is the planar-Jacobi direction, the SSOR scheme
takes the form of

Δ&=+19 ,:,; = (1 −Ω)Δ&
=
9,:,; +Ω('...

− � 9Δ&=9−1,:,; − � 9Δ&
=
9+1,:,; ...

− �:Δ&<1
9 ,:−1,; − �:Δ&

<2
9 ,:+1,; ...

− �;Δ&<1
9 ,:,;−1 − �;Δ&

<2
9 ,:,;+1),

(1)

where = loops from 1 to the total number of forward + backward sweeps and wraps the loops over the L/K/J directions,
and<1 = =+1, <2 = =, for = = odd and<1 = =, <2 = =+1, for = = even, withΩ being the relaxation factor. Depending
on the choice of the Jacobi direction, the loops over the J, K, and L directions will change order to place the Jacobi
direction as the innermost loop, with an appropriate shift of the <1 and <2 variables.

Until this point, we have not explained why the SSOR solvers work in a block Jacobi manner. Due to the overset
grid-assembly process, there is a distinction in OVERFLOW between ‘field’ points, which support valid solution data
and therefore a residual calculation, and ‘receiver’ points, which hold solution data that are supplied to them by ‘donor’
points (which are really field points from another grid block). In all previous versions of OVERFLOW, any receiver
points were treated as Dirichlet points within the linear solvers; the rows of both the LHS matrix and RHS vector were
set to zero and the main diagonal of the LHS was replaced with ones, effectively solving Δ& = 0 for those points. As an
example, only artificial overset boundaries exist for a split block that does not have any physical boundary conditions.
Due to these artificial boundaries, field points on the interior of the block evolve based only on the local approximate
linearization contained in the LHS as well as the residual calculation contained in the RHS, and would be artificially
constrained by frozen boundary values.

Prior to this work, the only way to damp out the errors caused by the frozen boundaries was by interchanging data
at the nonlinear level, creating a convergence bottleneck. Because of the iterative nature of the SSOR algorithm, it
is possible to interchange the approximate solution of the linear system after each sweep, resulting in an increase in
communication at the linear-solver level that can aid global convergence of the nonlinear problem. Due to the fortuitous
use of overlapping grids in a donor-receiver paradigm in OVERFLOW, the parallel interchange of Δ& and incorporation
into the SSOR solver is relatively simple to implement.

2

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

A. Parallel SSOR: Algorithm 1
The largest change necessary to incorporate a parallel SSOR solve in OVERFLOW is the creation of a synchronization

point for a parallel linear solve, as compared to the previous paradigm where grid blocks would only need to synchronize
at the start of each nonlinear step. This required only minor refactoring, and OVERFLOW has been modified so that
there is now persistent storage for the Jacobian matrices that form the LHS matrix as well as residual storage for the
RHS vector when using the parallel SSOR scheme. The SSOR scheme is initialized before the synchronization point,
and it is initially assumed that Δ& = 0 for all points, which generates a forcing function for the linear solver and a new
estimate for Δ&. Once the linear solve synchronization point is reached, donor-receiver points exchange their Δ& values
and store the exchanged values as the forcing function. Now, instead of ‘solving’ for Δ& = 0, receiver points solve for
Δ& = ‘A4248E43 ′Δ&. This happens before each symmetric sweep, and due to the first-order linearization, the effect
of the interchange is that receiver points, which are next to valid field points, will contribute off-block values to the
linear solver. This results in implicit communication between the donor-receiver points in a lagged manner at the linear
solver level, rather than at the nonlinear solver level. The parallel SSOR method is essentially similar to the hybrid
method proposed in Ref. [3] or the DP-SGS scheme proposed in Ref. [4], and will be referred to as parallel SSOR
(PSSOR) Algorithm 1, or the additive Schwarz PSSOR scheme as the updated Δ& values are unique to each subdomain.
Besides the addition of the persistent memory for the SSOR solver, the previously existing SSOR routines could be
resused with minor modifications, and the interchange of the Δ& values were able to use slightly modified versions
of the already existing donor-receiver interchange routines available in OVERFLOW. Essentially, no new code was
required to implement the parallel SSOR solver, only minor changes to existing routines and code restructuring to allow
for a synchronized linear solve.

for BD13><08=← 1 to =BD13><08=B do
Form LHS matrix & RHS vector;
Initialize Δ& = 0;

end
Linear Solve Synchronization Point;
for BF44? ← 1 to =BF44?B do

for BD13><08=← 1 to =BD13><08=B do
Interchange Δ&;

end
for BD13><08=← 1 to =BD13><08=B do

Perform One SSOR Update
end

end
Algorithm 1: Additive Schwarz PSSOR Algorithm.

B. Parallel SSOR: Algorithm 2
Depending on the order of the reconstruction scheme used for the inviscid flux terms, the amount of grid overlap

varies. Only one point of overlap is required for first-order schemes, while three points of overlap are needed for the
fifth-order WENO schemes. Because OVERFLOW uses a first-order, nearest neighbor linearization, first-order schemes
are limited to PSSOR Algorithm 1, as described above. However, wider stencil operators allow for a second variant
of the PSSOR scheme, which results in an overlapping solve. Points, which are not the outermost receiver point in
a residual stencil, have the support to form a first-order linearization. These receiver points can receive the forcing
function/residual value from their donor points in addition to the Δ& value. Since the outermost points in the residual
stencil do not support a first-order linearization, they only receive a Δ& value. This creates an overlapping domain
solve, a muliplicative Schwarz algorithm, with the overlap resulting in a shifting of the lagged boundary. Furthermore,
two variants of PSSOR Algorithm 2 exist; one where Δ& values are interchanged for all points in the overlap region,
which allows for independent evolution during each SSOR sweep but then ties each grid together before the start of
the next sweep, and a second where only the outermost points in the stencil receive updated Δ& values before each
sweep, in a manner similar to PSSOR Algorithm 1. This allows receiver points that supported a first-order linearization
to maintain the Δ& values they calculated rather than having them be overwritten. How much data are transferred
affects the degree of coupling between overset grids; overwriting all points could potentially increase the transfer of data
between subdomains, but only transferring the outermost point could be more efficient from the standpoint of parallel

3

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

communication requirements.
for BD13><08=← 1 to =BD13><08=B do

Form LHS matrix & RHS vector;
Initialize Δ& = 0;

end
Linear Solve Synchronization Point;
for BD13><08=← 1 to =BD13><08=B do

Interchange RHS vector;
end
for BF44? ← 1 to =BF44?B do

for BD13><08=← 1 to =BD13><08=B do
Interchange Δ&;

end
for BD13><08=← 1 to =BD13><08=B do

Perform One SSOR Update
end

end
Algorithm 2: Multiplicative Schwarz PSSOR Algorithm.

PSSOR Algorithm 2, while implemented, has not yet been studied in detail to determine its stability for practical
problems. Instead, the focus of the results section will be on PSSOR Algorithm 1 and how it addresses issues of
robustness and improves convergence as compared to other linear solver options.

C. Implementation in OVERFLOW
The PSSOR algorithms described above are currently implemented for the meanflow equations, species convection

equations, and 1- and 2-equation turbulence models available in OVERFLOW, and use the same underlying numerics as
the ISSOR algorithm. The modifications necessary to implement the PSSOR algorithm in OVERFLOW result in fairly
significant changes to the nonlinear solution update behavior. In the block-Jacobi path, the turbulence model, then the
species convection equation, and then the meanflow equations are solved in sequential order, with the meanflow being
able to use updated values from previously computed quantities e.g., the turbulent eddy viscosity, as it lags behind
the other equation sets. In the PSSOR path, the various equations are now updated at the same time across all blocks.
While the option still exists to vary the number of symmetric sweeps for the SSOR scheme between each of the equation
sets, the PSSOR scheme does not allow for different subdomains to use a different number of sweeps, nor does it allow
for ‘subcycling,’ i.e., taking multiple iterations per time step for the species convection or turbulence model, in order
to keep the solution process synchronized. The input files are checked at run-time and appropriate adjustments, with
warnings, are made to allow the PSSOR scheme to function if it is selected. As of this writing, users will not notice any
change in behavior when using OVERFLOW, except in the case of wall functions, which require an additional update
stage that was not previously present and may slightly change results.

IV. Test Cases
Several test cases are presented below, which compare the PSSOR scheme to the previous study of Derlaga et al. [2].

The intent behind these test cases is to not just demonstrate performance benefits, but to also educate readers on potential
issues and solutions to problems that users may experience.

A. S809 Airfoil
To demonstrate the impact of the parallel SSOR solver, a simple 2D, C-grid test case is shown below. One nonlinear

step with the original and improved SSOR solvers using 10 symmetric sweeps was taken on a low-speed (Mach=0.1) 2D
airfoil without grid splitting, initialized to freestream conditions, with the results shown in Fig. 1. As can be seen, the
pressure wave caused by the impulsive start has barely begun to influence the flowfield for the original SSOR scheme,
while the improved SSOR scheme introduced in OVERFLOW 2.3 appears to evolve at a much faster rate.

When grid splitting is applied, due to running in parallel with 8 MPI processes, both the original and improved
SSOR schemes experience an artificial constraining effect because of the explicit nature of the interblock boundaries, as
demonstrated by Fig. 2(a). Not only do grid blocks, which were initially at freestream conditions, remain at freestream

4

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

(a) Original SSOR. (b) Improved SSOR.

Fig. 1 One-step solution comparison of original and improved SSOR schemes without block splitting.

conditions, the constraining effect of the artificial boundaries results in an artificially higher pressure peak at the airfoil
leading edge, as compared to the run without block splitting. Due to the faster evolution of the improved SSOR scheme,
this type of behavior can destabilize the solution process. The result of the PSSOR solver on 8 MPI processes is
shown in Fig. 2(b). This solution is a much better match to the serial version of the improved SSOR scheme and
does not demonstrate nearly the same level of artificial constraint that the improved SSOR scheme shows with block
splitting. While the split grid blocks are not explicitly shown, careful study of Fig. 2(b) does show that there are slight
discontinuities that hint at the split grid interfaces, but these are only minor discontinuities. Because there is still a lag
caused by the block splitting, the PSSOR solution has not evolved to the same point as the serial improved SSOR case,
but the reader is reminded that this is not the goal of the parallel SSOR algorithm. The PSSOR scheme simply attempts
to be more implicit across artificial overset boundaries, and clearly succeeds.

(a) Improved SSOR. (b) Parallel SSOR.

Fig. 2 One-step solution comparison of improved and parallel SSOR schemes with block splitting.

For further insight, the case was run with 1, 2, 4, 8, and 16 MPI processes, with the residual histories shown in

5

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

https://arc.aiaa.org/action/showImage?doi=10.2514/6.2021-2747&iName=master.img-000.jpg&w=216&h=192
https://arc.aiaa.org/action/showImage?doi=10.2514/6.2021-2747&iName=master.img-001.jpg&w=216&h=192
https://arc.aiaa.org/action/showImage?doi=10.2514/6.2021-2747&iName=master.img-002.jpg&w=216&h=192
https://arc.aiaa.org/action/showImage?doi=10.2514/6.2021-2747&iName=master.img-003.jpg&w=216&h=192

Figure 3. Note that for 1 MPI process, both the improved and parallel SSOR scheme converge exactly the same because
the grid is not split. As soon as block splitting is introduced with 2 MPI processes, the ISSOR scheme experiences a
drastically reduced convergence rate, while the PSSOR scheme is essentially unchanged from the 1 MPI process case,
with only a slight reduction in convergence rate as the grid is further decomposed as the number of MPI processes
increases.

11

2

2

4

4

8

8

Iteration

lo
g

1
0
(|

|R
e

s
.|
| 2

)

200 400 600 800 1000
14

12

10

8

6

4

2 Improved SSOR

Parallel SSOR

16

16

1

Fig. 3 Comparison of residual convergence for improved and parallel SSOR schemes for a C-grid topology.
The number of MPI processes are indicated by the integer symbol.

To further demonstrate the benefits of the PSSOR algorithm, an O-grid topology was run with a partial sweep of
MPI processes, and is summarized in Table 1. For an O-grid, the body surface can be split across multiple blocks, so
this case more readily demonstrates the interaction of the implicit boundary conditions with grid splitting. A peculiar
note is that the improved SSOR scheme converged for 1 and 4 MPI processes but diverged for 2 and 3 processes, victims
of ‘unfortunate’ block splitting. At 8 or more MPI processes, the improved SSOR scheme stagnated. In contrast, for all
tested MPI ranks, the parallel SSOR scheme converged without difficulty, demonstrating its increased robustness as
compared to the improved SSOR scheme.

Table 1 Convergence across MPI ranks for O-grid test case. Symbols legend: ‘3’ indicates convergence, ‘7’
indicates divergence, and ‘-’ indicates stagnated convergence.

1 2 3 4 5 6 7 8 12 16 20 24
Improved SSOR 3 7 7 3 3 3 3 - - - - -
Parallel SSOR 3 3 3 3 3 3 3 3 3 3 3 3

The convergence behavior for 8 MPI proceses is shown in Figs. 4(a) and 4(b), where the PSSOR scheme converges,
while the ISSOR scheme oscillates around the converged PSSOR solution, albeit on the order of a few-thousandths of a
drag count. Nonetheless, the PSSOR scheme is convergent across the tested number of MPI processes, an important
benefit as compared to the ISSOR scheme. Given that these tests only examine overset communication due to block
splitting, the next question to be addressed is whether or not the PSSOR scheme will also improve general overset and
dynamic cases.

6

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

Iteration

lo
g

1
0
(|

|R
e

s
.|
| 2

)

200 400 600 800 1000
15

13

11

9

7

5

3

Improved SSOR

Parallel SSOR

(a) Residual convergence comparison.

Iteration

D
ra

g

0 200 400 600 800 1000
117.78

117.782

117.784

117.786

117.788

117.79

Improved SSOR

Parallel SSOR

(b) Drag (counts) convergence comparison.

Fig. 4 Solution comparison of improved and parallel SSOR schemes with block splitting for anO-grid topology.

B. NACA 0015 Pitching Airfoil
To further test the ability of the PSSOR scheme to improve convergence, an NACA 0015 airfoil oscillating in

pitch [5] between 6.8 and 15.2 degrees at " = 0.29 with a chord Reynolds number of 1.95 million has been studied
running on 16 MPI processes. The flowfield is initialized by running at 6.8 degrees and then goes through 3 pitch cycles,
with results examined on the third pitch cycle. While most of the solution procedure is the same as those in Ref. [2],
rather than starting the time accurate iterations from the same set of restart files after two pitch cycles, the linear scheme
(ISSOR vs. PSSOR) and subiteration convergence tolerance (2 vs. 3 orders), have been kept constant for each case to
demonstrate the effects from starting with different ‘base’ flows.

Figure 5(a) shows the required number of subiterations to reach both a two and three order-of-magnitude residual
drop per time step during the third pitch cycle. For a two order-of-magnitude residual drop, the PSSOR scheme
requires approximately 30 − 40% fewer subiterations per timestep than the ISSOR scheme. At a more challenging three
order-of-magnitude drop, the PSSOR scheme requires approximately 20% fewer subiterations.

The representative �� convergence, Fig. 5(b), is from the middle of the down pitch and shows greater variation than
the results in Ref. [2]. These differences are due to the different ‘base’ flows computed by each of the schemes leading
up to the third pitch cycle. The two- and three-order convergence PSSOR results show a similar convergence behavior
to each other, as do the ISSOR results. The main difference is that the PSSOR scheme plateaus closer to its ‘converged’
force values faster at each time step as compared to the ISSOR scheme, which demonstrates that the PSSOR scheme
speeds up both the residual convergence and force convergence.

7

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

Time Step

S
u

b
it

e
ra

ti
o

n
s

1700 1800 1900 2000 2100
0

10

20

30

40

50

Improved SSOR, 2 Order

Improved SSOR, 3 Order

Parallel SSOR, 2 Order

Parallel SSOR, 3 Order

(a) Subiterations required during final pitch cycle.

Subiteration

D
ra

g
 (

c
o

u
n

ts
)

0 5 10 15 20 25 30 35
250

250.5

251

251.5

252

252.5

253

253.5

254

Improved SSOR, 2 Order

Improved SSOR, 3 Order

Parallel SSOR, 2 Order

Parallel SSOR, 3 Order

(b) Representative �� convergence.

Fig. 5 NACA 0015 results.

C. 3rd Drag Prediction Workshop
To test a 3D configuration, the ‘Boeing-overflow’ grids provided on the 3rd AIAA Drag Prediction Workshop

website∗ were used to study Case W1 [6]. All the settings were reused from the previous work [2], except no grid
sequencing was used for the PSSOR scheme. Due to the minimal amount of overlap created by the static grid assembly
process the number of fringe points varies on coarser levels, sometimes resulting in no overlap. While OVERFLOW
will average the solution to fill in hole points at the nonlinear level, there is no such ability to do so at the linear solver
level. As such, it was found that the PSSOR scheme could sometimes be unstable when overset subdomains were found
to only be partially connected to the other grids on coarser levels.

Iteration

lo
g

1
0
(|

|R
e

s
.|
| 2

)

0 2500 5000 7500
8

6

4

2

0

Improved SSOR

Parallel SSOR

Fig. 6 Comparison of residual convergence for improved and parallel SSOR schemes for DPW3 wing grid.

Despite not having the benefits of grid sequencing to initialize the flowfield on the finest grid level, the PSSOR
scheme required approximately a third of the nonlinear iterations, on the finest grid level, to reach a ;>610 (|'4B |2) = −6
as compared to the ISSOR scheme, although, unfortunately, neither scheme is fully convergent for this case.

∗https://aiaa-dpw.larc.nasa.gov/Workshop3/workshop3.html

8

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

Despite the lack of residual convergence, the PSSOR scheme resulted in ‘converged’ force and moment coefficients
that could be used as ‘truth’ values, whereas the ISSOR scheme required an averaged ‘truth’ value to compute the
relative errors shown in Fig. 7. In general, the use of the PSSOR scheme resulted in halving the time to solution as
compared to the ISSOR scheme. On closer examination, the PSSOR scheme produced reasonably converged results in a
fraction of the time of the ISSOR scheme, fifteen minutes vs. an hour and fifteen minutes to reach a drag error of a tenth
of a count, a worthwhile time savings when, for instance, a large number of cases are needed to complete a test matrix.

Time (hours)

|P
e

rc
e

n
t

E
rr

o
r|

0 1 2 3 4
10

6

10
5

10
4

10
3

10
2

10
1

10
0

10
1 Improved SSOR

Parallel SSOR

(a) �!

Time (hours)

|P
e

rc
e

n
t

E
rr

o
r|

0 1 2 3 4
10

6

10
5

10
4

10
3

10
2

10
1

10
0

10
1 Improved SSOR

Parallel SSOR

(b) �<

Time (hours)

|P
e

rc
e

n
t

E
rr

o
r|

0 1 2 3 4
10

6

10
5

10
4

10
3

10
2

10
1

10
0

10
1 Improved SSOR

Parallel SSOR

Error within 0.1 count

Error within 1 count

(c) ��,E

Time (hours)

|P
e

rc
e

n
t

E
rr

o
r|

0 1 2 3 4
10

6

10
5

10
4

10
3

10
2

10
1

10
0

10
1 Improved SSOR

Parallel SSOR

Error within 0.1 count

Error within 1 count

(d) ��,?

Fig. 7 DPW3 force and moment percent error vs. time.

D. 6th Drag Prediction Workshop
For the final comparison, Case 2A from the 6th AIAA Drag Prediction Workshop [7] was reused with the same

settings from the study of Derlaga et al. [2] The PSSOR scheme ran successfully with grid sequencing, indicating that
its use should be examined on a case-by-case basis.

For this case, the PSSOR scheme does a superior job of smoothing through the transient behavior. Despite the
faster convergence towards steady-state, the PSSOR algorithm exhibits ‘bleed-through’ to the fuselage grid from the

9

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

stagnated convergence of the collar grid, as shown in Fig. 8. This is not unexpected, as the PSSOR scheme should result
in better communication between grids, but this serves as a reminder that the scheme is not a panacea that will fix all
convergence problems. Even so, the better convergence behavior provided by the PSSOR scheme shaves an hour of time
to converge drag to within 0.1 count of the final answer, from three hours to two hours, as shown in Fig. 9. Once past the
transient behavior, overall convergence of the forces and moments follows the same general trend and the final force and
moment values are very similar.

Iteration

lo
g

1
0
(|

|R
e

s
.|
| 2

)

0 5000 10000 15000
16

12

8

4

0 Body, Improved SSOR

Body, Parallel SSOR
Nose, Improved SSOR
Nose, Parallel SSOR

Nose

Body

(a) Body Grids.

Iteration

lo
g

1
0
(|

|R
e

s
.|
| 2

)

0 5000 10000 15000
16

12

8

4

0 Collar, Improved SSOR

Collar, Parallel SSOR

Wing, Improved SSOR

Wing, Parallel SSOR

Tip Cap, Improved SSOR

Tip Cap, Parallel SSOR

Tip Cap

Collar

Wing

(b) Wing Grids.

Fig. 8 DPW6 convergence comparison.

10

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

Time (hours)

|P
e

rc
e

n
t

E
rr

o
r|

0 4 8 12
10

6

10
5

10
4

10
3

10
2

10
1

10
0

10
1

Improved SSOR

Parallel SSOR

C
L
 Tolerance

(a) �!

Time (hours)

|P
e

rc
e

n
t

E
rr

o
r|

0 4 8 12
10

6

10
5

10
4

10
3

10
2

10
1

10
0

10
1

Improved SSOR

Parallel SSOR

(b) �<

Time (hours)

|P
e

rc
e

n
t

E
rr

o
r|

0 4 8 12
10

6

10
5

10
4

10
3

10
2

10
1

10
0

10
1

Improved SSOR

Parallel SSOR

Error within 1 count

Error within 0.1 count

(c) ��,E

Time (hours)

|P
e

rc
e

n
t

E
rr

o
r|

0 4 8 12
10

6

10
5

10
4

10
3

10
2

10
1

10
0

10
1

Improved SSOR

Parallel SSOR

Error within 1 count

Error within 0.1 count

(d) ��,?

Fig. 9 DPW6 force and moment percent error vs. time.

11

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

V. Conclusions
Amethod for parallelizing the SSOR solver in OVERFLOW has been proposed, successfully tested, and demonstrates

convergence improvements versus the improved SSOR scheme introduced with OVERFLOW 2.3. Parallelization of the
linear solver has generally resulted in improving the convergence of cases where the increased explicitness due to block
splitting has resulted in slower convergence. In addition, testing appears to indicate that the parallel SSOR algorithm is
less sensitive to instabilities caused by block splitting. Despite mostly positive results, the parallel scheme may fail
when grid sequencing is used due to a lack of overset support and underlying grid issues may hinder convergence as
well. Ideally, the parallel SSOR algorithm will be tested in the future as a preconditioner for a Krylov scheme in order to
more fully couple overset blocks together at the linear solver level, and thereby reduce the number of nonlinear iterations
for convergence.

Acknowledgments
The authors would like to thank the NASA Revolutionary Vertical Lift Technology (RVLT) Project of the Advanced

Air Vehicles Program (AAVP) for supporting this work. The first author would like to thank Robert ‘Bobby’ Nichols
(The University of Alabama at Birmingham) for his discussions on the SSOR solver; Bobby’s suggestions led to starting
the work on a parallelized SSOR solver for OVERFLOW. In addition, special thanks go to Brian Allan (LaRC) for testing
the parallel SSOR solver. His initial tests for 3D, moving body problems helped prove the effectiveness of this work.

References
[1] Nichols, R. H., Tramel, R. W., and Buning, P. G., “Solver and Turbulence Model Upgrades to OVERFLOW 2 for Unsteady and

High-Speed Applications,” AIAA Paper 2006–2824, 2006. doi:10.2514/6.2006-2824.

[2] Derlaga, J. M., Jackson, C. W., and Buning, P. G., “Recent Progress in OVERFLOW Convergence Improvements,” AIAA Paper
2020–1045, 2020. doi:10.2514/6.2020-1045.

[3] Wissink, A. M., Lyrintzis, A. S., and Strawn, R. C., “Parallelization of a Three-Dimensional Flow Solver of Euler Rotorcraft
Aerodynamics Predictions,” AIAA Journal, Vol. 34, No. 11, 1996, pp. 2276–2283. doi:10.2514/3.13391.

[4] Lee, B., and Lee, D. H., “Data Parallel Symmetric Gauss-Seidel Algorithm for Efficient Distributed Computing using Massively
Parallel Supercomputers,” AIAA Paper 1997–2138, 1997. doi:10.2514/6.1997-2138.

[5] Piziali, R. A., “2-D and 3-D Oscillating Wing Aerodynamics for a Range of Angles of Attack Including Stall,” NASA TM-4632,
Ames Research Center, Sep. 1994.

[6] Vassberg, J. C., Tinoco, E., Mani, M., Brodersen, O., Eisfeld, B., Wahls, R., Morrison, J. H., Zickuhr, T., Laflin, K., and Mavriplis,
D., “Summary of the Third AIAA CFD Drag Prediction Workshop,” AIAA Paper 2007–260, 2007. doi:10.2514/6.2007-260.

[7] Tinoco, E. N., Brodersen, O., Keye, S., Laflin, K., Feltrop, E., Vassberg, J., Mani, M., Rider, B., Wahls, R., Morrison, J., Hue,
D., Gariepy, M., Roy, C., Mavriplis, D., and Murayama, M., “Summary of Data from the Sixth AIAA CFD Drag Prediction
Workshop: CRM Cases 2 to 5,” AIAA Paper 2017–1208, 2017. doi:10.2514/6.2017-1208.

12

D
ow

nl
oa

de
d

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n

O
ct

ob
er

 1
, 2

02
1

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

1-
27

47

http://dx.doi.org/10.2514/6.2006-2824
http://dx.doi.org/10.2514/6.2020-1045
http://dx.doi.org/10.2514/3.13391
http://dx.doi.org/10.2514/6.1997-2138
http://dx.doi.org/10.2514/6.2007-260
http://dx.doi.org/10.2514/6.2017-1208
https://arc.aiaa.org/action/showLinks?system=10.2514%2F6.1997-2138&citationId=p_4
https://arc.aiaa.org/action/showLinks?system=10.2514%2F6.2006-2824&citationId=p_1
https://arc.aiaa.org/action/showLinks?system=10.2514%2F6.2007-260&citationId=p_6

	Introduction
	Background and Motivation
	The SSOR Algorithm
	Parallel SSOR: Algorithm 1
	Parallel SSOR: Algorithm 2
	Implementation in OVERFLOW

	Test Cases
	S809 Airfoil
	NACA 0015 Pitching Airfoil
	3rd Drag Prediction Workshop
	6th Drag Prediction Workshop

	Conclusions

